Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Properties of different temperature annealed Cu(In,Ga)Se2 and Cu(In,Ga)2Se3.5 films prepared by RF sputtering

Identifieur interne : 000434 ( Chine/Analysis ); précédent : 000433; suivant : 000435

Properties of different temperature annealed Cu(In,Ga)Se2 and Cu(In,Ga)2Se3.5 films prepared by RF sputtering

Auteurs : RBID : Pascal:13-0073546

Descripteurs français

English descriptors

Abstract

We have investigated the effect of annealing temperature on structural, compositional, electrical properties of the one-step RF sputtered Cu(In,Ga)Se2 and Cu(In,Ga)2Se3.5 films. After the annealing at various temperatures, loss of Se element is significant for the Cu(In,Ga)Se2 films and meanwhile composition of the annealed Cu(In,Ga)2Se3.5 films keeps almost constant. The as-deposited Cu(In,Ga)Se2 and Cu(In,Ga)2Se3.5 films show amorphous structure and they follow different transformation process to form chalcopyrite structure. Electrical conductivity of the annealed CIGS films related to their chemical composition. Cu(In,Ga)Se2 films annealed at 150 °C show unique electron transport mechanism for the formation of hexagonal CuSe phase. Electrical conductivity of the chalcopyrite structure films are dominated by the "variable range hopping" transport mechanism. The annealed Cu(In,Ga)2Se3.5 films present higher density of disorders than the annealed Cu(In,Ga)Se2 films for their significant Cu deficient composition.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0073546

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Properties of different temperature annealed Cu(In,Ga)Se
<sub>2</sub>
and Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films prepared by RF sputtering</title>
<author>
<name>ZHOU YU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R&D Center (SNERDC), Mail Stop 165#, Southwest Jiaotong University</s1>
<s2>Chengdu 610031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LIAN LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R&D Center (SNERDC), Mail Stop 165#, Southwest Jiaotong University</s1>
<s2>Chengdu 610031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONG YAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R&D Center (SNERDC), Mail Stop 165#, Southwest Jiaotong University</s1>
<s2>Chengdu 610031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YANXIA ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R&D Center (SNERDC), Mail Stop 165#, Southwest Jiaotong University</s1>
<s2>Chengdu 610031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHASHA LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R&D Center (SNERDC), Mail Stop 165#, Southwest Jiaotong University</s1>
<s2>Chengdu 610031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CHUANPENG YAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R&D Center (SNERDC), Mail Stop 165#, Southwest Jiaotong University</s1>
<s2>Chengdu 610031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONG ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R&D Center (SNERDC), Mail Stop 165#, Southwest Jiaotong University</s1>
<s2>Chengdu 610031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONG ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R&D Center (SNERDC), Mail Stop 165#, Southwest Jiaotong University</s1>
<s2>Chengdu 610031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chengdu 610031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Materials Science and Engineering, University of New South Wales</s1>
<s2>Sydney 2052, NSW</s2>
<s3>AUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Sydney 2052, NSW</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0073546</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0073546 INIST</idno>
<idno type="RBID">Pascal:13-0073546</idno>
<idno type="wicri:Area/Main/Corpus">001298</idno>
<idno type="wicri:Area/Main/Repository">001647</idno>
<idno type="wicri:Area/Chine/Extraction">000434</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0169-4332</idno>
<title level="j" type="abbreviated">Appl. surf. sci.</title>
<title level="j" type="main">Applied surface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Copper selenides</term>
<term>Electrical conductivity</term>
<term>Gallium selenides</term>
<term>Indium selenides</term>
<term>Sputtering</term>
<term>Surface structure</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recuit</term>
<term>Pulvérisation irradiation</term>
<term>Couche mince</term>
<term>Structure surface</term>
<term>Conductivité électrique</term>
<term>Séléniure de cuivre</term>
<term>Séléniure d'indium</term>
<term>Séléniure de gallium</term>
<term>Cu(In,Ga)Se2</term>
<term>8140E</term>
<term>8115C</term>
<term>6855J</term>
<term>7361</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have investigated the effect of annealing temperature on structural, compositional, electrical properties of the one-step RF sputtered Cu(In,Ga)Se
<sub>2</sub>
and Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films. After the annealing at various temperatures, loss of Se element is significant for the Cu(In,Ga)Se
<sub>2</sub>
films and meanwhile composition of the annealed Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films keeps almost constant. The as-deposited Cu(In,Ga)Se
<sub>2</sub>
and Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films show amorphous structure and they follow different transformation process to form chalcopyrite structure. Electrical conductivity of the annealed CIGS films related to their chemical composition. Cu(In,Ga)Se
<sub>2</sub>
films annealed at 150 °C show unique electron transport mechanism for the formation of hexagonal CuSe phase. Electrical conductivity of the chalcopyrite structure films are dominated by the "variable range hopping" transport mechanism. The annealed Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films present higher density of disorders than the annealed Cu(In,Ga)Se
<sub>2</sub>
films for their significant Cu deficient composition.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-4332</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. surf. sci.</s0>
</fA03>
<fA05>
<s2>261</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Properties of different temperature annealed Cu(In,Ga)Se
<sub>2</sub>
and Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films prepared by RF sputtering</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHOU YU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LIAN LIU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YONG YAN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YANXIA ZHANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SHASHA LI</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHUANPENG YAN</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>YONG ZHANG</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>YONG ZHAO</s1>
</fA11>
<fA14 i1="01">
<s1>Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education of China, Superconductivity and New Energy R&D Center (SNERDC), Mail Stop 165#, Southwest Jiaotong University</s1>
<s2>Chengdu 610031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Materials Science and Engineering, University of New South Wales</s1>
<s2>Sydney 2052, NSW</s2>
<s3>AUS</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>353-359</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16002</s2>
<s5>354000509591060520</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0073546</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have investigated the effect of annealing temperature on structural, compositional, electrical properties of the one-step RF sputtered Cu(In,Ga)Se
<sub>2</sub>
and Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films. After the annealing at various temperatures, loss of Se element is significant for the Cu(In,Ga)Se
<sub>2</sub>
films and meanwhile composition of the annealed Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films keeps almost constant. The as-deposited Cu(In,Ga)Se
<sub>2</sub>
and Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films show amorphous structure and they follow different transformation process to form chalcopyrite structure. Electrical conductivity of the annealed CIGS films related to their chemical composition. Cu(In,Ga)Se
<sub>2</sub>
films annealed at 150 °C show unique electron transport mechanism for the formation of hexagonal CuSe phase. Electrical conductivity of the chalcopyrite structure films are dominated by the "variable range hopping" transport mechanism. The annealed Cu(In,Ga)
<sub>2</sub>
Se
<sub>3.5</sub>
films present higher density of disorders than the annealed Cu(In,Ga)Se
<sub>2</sub>
films for their significant Cu deficient composition.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A40E</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Structure surface</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Surface structure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>8140E</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>45</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>8115C</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>6855J</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>7361</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fN21>
<s1>042</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000434 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000434 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0073546
   |texte=   Properties of different temperature annealed Cu(In,Ga)Se2 and Cu(In,Ga)2Se3.5 films prepared by RF sputtering
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024